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The problem of stability in the machining processes is very important and is strictly
connected with the "nal quality of the product. In this paper, the vibrations of
a tool}workpiece system induced by random disturbances in a straight turning process, and
their e!ect on a product surface is considered. Based on experimentally obtained system
parameters simulations are provided using a one-degree-of-freedom model. Noise has been
introduced into the model by the Langevin equation. The product surface shape and its
dependence on the level of noise has also been analyzed.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The quality of the "nal surface of a workpiece due to a cutting process is of natural interest
within industry and technology. Grabec [1, 2] and Gradisek et al. [3] analyzed a simple
orthogonal cutting model and found that chaotic conditions in the tool}workpiece system
due to appropriate system parameters are clearly possible. As they have demonstrated the
appearance of such chaotic conditions can have a crucial e!ect on the stability of the cutting
process. Chaotic vibrations were also investigated experimentally by Tansel et al. [4]. On
the other hand instabilities in the cutting process have, for a long time, been known as
a chatter phenomenon [5}7]. The mechanism of their appearance includes the e!ect of
non-linear self-excitation during the cutting process, leading to vibrations with a larger
value of amplitude often beyond the admissible limit. One of the sources of instability can be
identi"ed in the roughness of the initial surface of a material, which introduces
a randomness into the material resistance during the dynamic process. Wiercigroch and
Cheng [8] have investigated the in#uence of noise on the orthogonal cutting system. In
their analysis, they started from the spectral representation of stochastic process.
Nevertheless, the most common treatment of dynamical processes in#uenced by noise is the
Fokker}Plank approach [9}11]. Because of considerable di$culties which are met by
solving higher dimensions, as well as for numerical reasons, the problem could be
transformed to the corresponding Langevin equations [10, 11]. Here, following references
[11}14] we use the stochastic Langevin equations with an additive white noise and then
solve the dynamic equations of the system. Previous articles [8, 11, 13] devoted to the
cutting process in the presence of noise focussed rather on the problem of the dynamics and
the possibilities of bifurcations which can be induced by random disturbances. Interestingly,
022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.



Figure 1. Experimental standing with a cast iron workpiece.

730 J. LIPSKI E¹ A¸.
Wiercigroch and Cheng [8], and later Przystupa and Litak [11], investigated the
orthogonal cutting process with two degrees of freedom and claimed that in some
conditions weak noise can even act to stabilize the chaotic attractor. On the other hand,
reference [14] deals with the reconstruction of the system dynamics from the stochastic time
series. In that treatment, the cutting process was assumed to be deterministic, but the
measured data were in#uenced by noise coming from the measurement procedure itself.

This new paper is also a contribution to the complicated problem of the dynamics of the
cutting process but focusses on the "nal quality of the product surface, and in this context,
on the stability of the process as well. Note that in Figure 1 the shape of an initial surface of
a cut workpiece is shown. The shape has numerous imperfections which are modelled by
means of random deviations from an ideal cylindrical surface. Adopting a simple
one-degree-of-freedom model for regenerative cutting [15] the e!ect of a previous pass of
a straight turning process has been included by means of a time delay term [16].

2. DETERMINISTIC MODEL OF CUTTING PROCESS

The physical model of a straight turning process corresponding to the experimental
system used is presented in Figure 2. Here we have introduced the following notations: v

�
is

the relative velocity between the tool and the workpiece, h
�
is an assumed initial depth

whilst h is the actual cutting depth, w is the principal axis of relative vibrations, y indicates
the direction normal to the axis of workpiece symmetry, � is the tool cutting edge angle;
k and c are the sti!ness and damping coe$cients of the system, respectively, n denotes the
rotational velocity of the workpiece, f denotes the direction of feed in straight turning, and
m is the e!ective mass of the system.

The main vibration is in the w-direction, perpendicular to the cutting edge (Figure 2) and
to be precise one should analyze the vibrations as well as the cutting force in the w direction.



Figure 2. Physical model of a straight turning process.
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However, the interest is in the "nal surface pro"le given by the time history of y, and not by
the actual pro"le w. To analyze the vibration in the y direction we have simultaneously
projected the vibrations and forces into the y direction. Thus the deterministic equation of
motion of the dynamical system, projected onto the normal (to "nal surface) direction y, can
be written as follows [15]:
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�
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where p is the natural frequency of free vibrations of the workpiece, p�"k/m, whilst
2nJ "c/m. Non-linearities appearing in that system are included in the g
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The cutting depth h and relative velocity v
�
are de"ned [14, 15] by

h"h
�
#y (t�)!y (t), v

�
"1!

yR
v
�

. (3)

�(h) and sgn(v
�
) correspond to step functions, namely the Heaviside and sign functions,

respectively, and v
�
is the linear velocity of the rotational motion of the workpiece during

the steady cutting process.
t� is the time of a previous pass

t�"t!�t, (4)

where �t is the workpiece revolution time during machining. The shape of the non-linear
function g

�
(equation (2)), dependent on h and v

�
, is presented in Figure 3. Note that the

two-dimensional surface g
�
"g

�
(h, v

�
) was plotted only for positively de"ned h. In the case

of negative h, the force on the left side of equation (1), is zero because of the contact loss
between the tool and the workpiece. The sudden sign change of the cutting force, as
a function of the relative velocity v

�
, is due to a frictional phenomenon between the tool and

the chip.
The model is equations (1)}(3) with one-degree-of-freedom is a serious simpli"cation of

a physical situation, however the aim is not to provide a comprehensive description of the



Figure 3. Non-linear function g
�
(h, v

�
) versus cutting relative velocity.
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cutting process but to concentrate on particular aspects of it. In spite of the simplicity of the
model the chatter vibrations can still be generated due to the non-linearities in the cutting
force g

�
(h, v

�
) as was shown in reference [15]. In the model in this paper chatter is generated

by a combination of the friction phenomenon between the tool and chips, and the impact of
the tool after it loses contact with the workpiece.WarminH ski et al. [15] examined the second
pass of the orthogonal cutting process by using a similar model and the results obtained
have indicated that such a model can lead to periodic, quasi-periodic, as well as chaotic
vibrations, due to the initial harmonic modulation of the machined surface.

For the purpose of numerical calculation the equations (1)}(4) have been written in
a discrete way by introducing the constant time step �:

t
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where t
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is a discrete sampling time after r time steps. The function g

��
should be expressed as
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where r and s are natural numbers. The time di!erence between the y
�
and y

�
co-ordinates;

�t"(r!s)� relates to the time of the workpiece revolution (equation (4)). The system
parameters obtained from the experiment are as follows p"785 rad/s, m"12)1 kg,
K"620 N, h

�
"1)5�10�� m, f"0)1�10�� m/rev, 2nJ "190 1/s, v

�
"0)1 m/s, �"703,

and c
�
"0)5, c

�
"1)55 are cutting process constants derived from references [7, 15].
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3. INFLUENCE OF NOISE

Most real dynamical processes are disturbed by random signals. In the case of the cutting
process they come through the roughness of the initial surface (Figure 1). Other sources of
disturbance can be found in the spontaneous breaking of chips and the couplings of the tool
and the workpiece to other dynamic parts of the experimental system.

To describe the stochastic system, a random component is introduced to the model by
means of an additive white noise of Gaussian distribution [10}14]. Usually, stochastic
dynamic systems are investigated by using the Fokker}Planck equation [8}11]. The
one-dimensional version of this is

�
�t
P (y, t)"

�
�y

[�(y)P(y, t)]#D
��

�y�
P(y, t), (7)

whereD denotes the di!usion coe$cient, �(x) is, in general, the non-linear drift term (driving
force) and P(x, t) is the probability distribution function. Solving the Fokker}Plank
equation involves some considerable di$culties [10,11] and so it has been transformed into
the corresponding Langevin equation

yR "z(y)#g�(t), (8)

where g�(t) is a Gaussian distributed random &&force''with strength g, and � (t) is assumed to
satisfy

��(t)�"0,

��(t), � (t�)�"2�(t!t�), (9)

where the brackets denote an average over the probability distribution function. Starting
with the de"nitions of the drift �, and di!usion D, coe$cients obtained via the
Kramers}Moyal expansions in the derivation of the Fokker}Plank equation from the
Chapman}Kolmogorov equation [17], one can "nd the relation between � (y) and D of the
Fokker}Plank equation (equation (7)) with z(y) and g of the Langevin equation (equation
(8)). Thus the Langevin equation can "nally be expressed in terms of the drift and di!usion
terms of the initial Fokker}Plank equation as

yR "�(y)#�D�) (t). (10)

For the actual numerical calculation the discretized forms:

y (t#�)!y(t)"�
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�
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�

dt��(t�)+�(t)�#�D�) (t), (11)

where

�) (t)"�
���

�

dt��(t� ) (12)

is a superposition of Gaussian-distributed random numbers, which again are of a Gaussian
form. Namely

�) (t)"a	(t). (13)
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In the present case, the average value of 	 has been chosen to be �	�"0 while its variance
is �	��"2 respectively. From the integration of the Gaussian function of equation (12) the

coe$cient a (equation (13)) depends on the time integration step � via a"��. Equation (8)
can, in general, be solved by higher order algorithm such as Runge}Kutta [18]. However,
for simplicity, here we have limited our discussion to the simplest type of Euks algorithm.
Thus, the "nal form of the Langevin equation at the lowest order of perturbation, case as
suitable for numerical integration is given by the following expression:

y
���

"y
�
#� (y

�
)�#�D��	(t

�
). (14)

Here the one-dimensional version of the Langevin and Fokker}Plank equations has been
analyzed, but a similar discussion on the m-dimensional stochastic Langevin equation, and
its relation to the corresponding Fokker}Plank equation, can be found in reference [14].

In the model of this paper the equation for y
�
has to be supplemented by equations (5), (6)

for discrete time t
�
and velocity v

�
, which is now substituted by the corresponding drift

term �
�
:
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#

K

m
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Using the above procedure (equations (4), (5), (14), (15)) the simulations for a constant
time step �"0)741�10�� s have been completed. These correspond to the workpiece
revolution time �t"0)741�10�� s, and a number of di!usion constant values D.
Figure 4. Time histories of y for various values of di!usion constants (a) D"0, (b) D"10��, (c) D"10��.



Figure 5. Shape error as a function of workpiece rotation angle after 3 s of cutting.D"0,**;D"10�� - - - - -;
D"10��, ) ) ) ) ) ); D"10��, ...........

Figure 6. Distribution probabilities of random input (a) and output y (b) signals of the model for D"10��.
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Figures 4(a)}4(d) show the time histories of y for the initial 3 s of cutting work for
experimentally identi"ed system parameters (section 2). For a deterministic system (D"0,
Figure 4(a)), the stable cutting process is observed with no vibrations. Figures 4(b) and 4(c)
relate to the cutting process in the presence of noise. The di!usion constant values for these
"gures are D"10�� and 10�� respectively. One can see easily that the presence of small
vibrations (Figure 4(b)), which grow with an increase in the noise level (Figure 4(c)).
Obviously, such vibrations have a signi"cant e!ect on the quality of the workpiece surface.
It is shown in Figure 5 that the error shape of the surface is plotted as a function of the
workpiece rotation angle after 3 s of cutting work.

The modulation of the shape caused by random disturbances depends on the noise level.
Both input and output random signals can easily be measured by means of standard
deviations. For various values of D such as 10��, 10�� and 10�� the following values of
standard deviations arise 
"3)79�10�	, 1)21�10�� and 4)16�10�� m respectively. In
Figures 6(a) and 6(b), the input and output random signals are compared for one of the
above cases (D"10��). Figure 6(a) shows the distribution of Gaussian disturbances of
input noise 	 (equations (8), (9)) whilst Figure 6(b) corresponds to the errors in the



Figure 7. Standard deviation 
 as a function of a di!usion constant D.
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workpiece shape after cutting. In Figure 6(b) the deviation from the normal probability
distribution is caused by the non-linear dynamics of the cutting process. To quantify the
system the standard deviations of the output signal 
 are used as a function of performance
di!usion constant D. This is plotted on a logarithmic scale in Figure 7. It has been checked
that 
 (D) can be scaled as the square root as long as the noise level is low, whilst for
a stronger noise the e!ect on the #uctuations of y is more pronounced.

4. SUMMARY AND CONCLUSIONS

The vibrations of a tool}workpiece system have been considered for a straight turning
process induced by random disturbances, and their e!ect on the product surface. Using
a single-degree-of-freedom model the combined e!ects of the friction non-linearities and
tool}workpiece contact less have been considered. It has been noticed that for a large
enough level of noise the tool and workpiece start to vibrate due to random forcing. Such
excitations can interact with the complex dynamics of the system and lead to process in
stability, and, in the end, to a much worse "nal quality in the machined product. In the case
of a relatively small level of noise (a small value of the di!usion constant D), the surface
shape error scales as the square root ofD. For a higher value of noise level the shape error is
proportional to D. Clearly for straight turning the initial surface roughness in#uences the
quality of the "nal product. This is the principal result of this paper which leads to
the conclusion that one has to prepare the workpiece so that the initial surface satis"es the
appropriate criteria.
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